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Abstract 

We show. that in a gauge theory with gauge hierarchy, a long range attractive feeble 

force can arise in general within the framework of perturbative field theory. The force 

is the result of the existence of a Higgs boson whose mass and matter couplings are 

both naturally suppressed by powers of the biexarcblcal scale ratio. Some simple but 

realistic examples are used to demonstrate thia merhanism. 
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A recent reanalysisl’l of Eijtvlis experiment PI has reignited the enthusiasm among physi- 

cists in looking for possible deviation from Newtonian gravity which may be resulting from 

a yet unknown long range force. It has become customary to parametrize the corresponding 

total potential energy of a two-body system as 

v(T) = VN,,,,, + AV = - . 

In general, a depends on material. Experimental constraints come from various source& 

namely, laboratory measurments, geophysics, planetary measurements. They cover X from 

mm to about 10’sm. For X about 1 m, the present constraint isI’ 

a(X = 1 In) s 0.001 

The bound becomes tighter as the range increases up to 10 km, where we have 14 

a(X = 1 km) 5 10-s . 

In quantum field theory, the range X is related to the mass of the exchange particle. 

X = l/m,. To produce a long range force one thus requires a very small mass for the 

particle that mediates the interaction. It is interesting to ask whether within the context of 

the present theoretical framework one can naturally generate such an interaction. 

Many ideas have been put f&ward in this direction. Some of them predict a repulsive 

force(sj mediated by vector particles and some predict an attractive forcels] mediated by scalar 

particles. But none of them seems to be particularly convincing or simple. In this paper we 

propose a mechanism involving scalar particles which we think is by far the simplest. The 

mechanism may be realized in grand unified extension of the standard model without an! 

reference to nonperturbative mechanisms like instanton[d or gravitational mechanisms like 

compactification[s1. 

Clearly to produce a very small mass and a very weak interaction one requires a very small 

parameter. Such a small parameter is already needed in any grand unified theory (,GUT) 

in order to account for the small ratio between the weak scale and the grand unification 

scale. It is very interesting to see if one can generate an attractive feeble long range force 

(r\FLRF) using this small ratio called gauge hierarchy. Given the gauge hierarchy in a theory 

we would like to illustrate a mechanism with which one can generate an AFLRF. Sate that 

we ha.ve nothing to illuminate about the gauge hierarchy problem. We also do not. bother 

to maintain minimal fine-tuning. Since whatever solution (like supersymmetry) one finally 
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adopts to cure the gauge hierarchy p;.oblem, it probably will not require the fine-tuning to 

be minimal anyway. 

The basic idea is not very different from those put forth in the literature beforeis) using 

pseudo-Goldstone bosom (PGB). 0 ne way to have a PGB with very small mass and very 

weak scalar coupling is as follows. First of all, one needs a low energy continuous global 

symmetry which is not a symmetry of the high energy theory. Since this symmetry is not 

maintained at the higher energy scale, one cannot simply impose it in the low energy theory. 

Therefore the symmetry has to be an accidental symmetry of the renormalizable terms of the 

low energy theory. A well-known example of a symmetry of this type is the baryon number 

in the Standard Model embedded in any GUT. Secondly, one has to break this symmetry 

spontaneously in the low energy scale. (This is the step that is complicated to implement 

on the baryon number symmetry). The resulting Goldstone boson will in general pick up a 

small mass suppressed by GUT scale. Aided by the CP violation in the low energy theory. 

the pseudo-Goldstone nature of this particle will eventually lead to a small scalar coupling 

which is also suppressed by the GUT scale. 

This simple idea however is not so easy to implement simply and realistically. The reason 

is that, in simple models, it is in general difficult to break an accidental symmetry span 

taneously. The Higgs boson that is needed to break the symmetry in the low energy will 

introduce explicit renormalizable symmetry breaking terms in the lagrangian and destroy 

the symmetry. However there is a way to avoid this, as we shall discuss in this article. The 

mechanism is to have this low energy global continuous symmetry embedded in the high 

energy local symmetry. It is much easier to recover part of the high energy symmetry t,ha.n 

to produce a new one. When the gauge symmetry is broken at high energy a discrete sym- 

metry survives in the low energy theory. When this discrete symmetry is imposed on the 

renormalizable terms of the low energy theory, a continuous symmetry arises accidentally 

as a result. If this accidental symmetry were exact, a Goldstone particle would result from 

the spontaneous breaking of this symmetry. However, the symmetry is exact only in the 

renormalizable terms of the low energy theory. The full low energy effective theory contains 

non-renormalizable terms as well, which are damped by inverse powers of the high energy 

scale. Since in the high energy wor!d the continuous symmetry is already broken sponta- 

neously, such terms do not necessarily obey the symmetry. Hence, after the low energy 

spontaneous breaking, we would not obtain a true massless Goldstone boson. Rather, a 

PGB would arise, with a mass inversely proportional to some power of the high energy scale. 
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Even a massive PGB does not guarantee an AFLRF. In addition, one has to break the 

CP symmetry which forbids a pseudo-scalar particle from developing a scalar coupling with 

fermions. This is not difficult to achieve in general. However, depending on the mechanism 

of CP violation, it may result in extra suppression factors for the strength of the AFLRF. 

In particular, one needs this CP violation to be a low energy effect so as to avoid additional 

powers of suppression due to the gauge hierarchy. 

In the following, we will present simple models that realize this scenario. We like to 

keep the models as simple as possible in order to make the mechanism more transparent. In 

particular. we shall not use any of the popular gauge groups for GUT. The simplicity of our 

models should convincingly illustrate that the mechanism can be implemented in any GUT. 

The mechanism is to extend the electroweak model to include additional local gauge 

symmetry which is spontaneously broken at the very high energy scale AG. As the simplest 

possible high energy symmetry which illustrates the idea, we shall take the extension to he 

just an additional UG(~). The interaction at AG scale affects the low energy physics through 

some light ( fields which carry Vc( I.) charge. We assume that a remnant discrete sysmetry 

Z, c UG( 1) remains unbroken below the A0 scale, 

2, : (+P+C ) (2) 

where m and n are mutually prime. For n 2 5, this discrete symmetry guarantees that the 

low energy renormalizable interactions respect an accidental global symmetry cm(l), C-e’@<. 

To generate AFLRF, one still needs low energy CP violation. One can in principle use 

the Kobayashi-Maskawa(K-M) mechanism in the standard model for this purpose. However. 

in that case, the mixing will be suppressed by high powers of light fermion masses and some 

loop suppression factors. This is a result of GIM suppression and the fact that in the K-M 

mechanism CP violation will disappear if any of the up- or down-quark mass differences 

are zero. Therefore an alternative mechanism of CP violation is needed to avoid these 

suppression factors. To implement the CP nonconservation in the Higgs sector; we shall 

introduce two light SU(2) x U(1) singlets <i and Cz besides the usual doublet 4. For the 

sake of simplicity, we assume that [i and C2 have same quantum numbers of the gauge group 

Li,(l). 

Now consider first the renormalizable terms in the Lagrangian. We can arrange that the 

U”(l) is spontaneously broken at low energy by (c;). S ince two c’s are identical, one can 

make linear combinations such that ([s) = 0. In th e renormalizable low energy Lagrangian. 
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we can use Un( 1) symmetry to rotate a phase away, i.e. we can set Im (G) = 0. In such 

convention, the Goldstone boson w is simply given by Im C r. The Irn(* will mix with the 

usual Higgs boson, ReqP, via the CP nonconserving interactions 

Cij($‘4)(f,‘fj,) + D~rnn(f~f/Gnf~) t h.c. , 

with complex coefficients Cij and Dkl,,,“. Note that after spontaneous symmetry breaking. 

there is no tadpole term induced for Cz in the convention ((2) = 0. 

From the discussion so far, it might seem that the Goldstone boson w is massless and 

does not directly couple to fermions, whereas ImCz couples to fermions in the scalar (not 

pseudoscalar) form through the mixing with the ordinary neutral Higgs boson. But this is 

so because we have been talking only of the renormalizable terms in the low-energy effective 

Lagrangian. In addition, interactions at the AG scale give rise to non-renormalizable terms 

in the effective Lagrangian of the form 

&&‘-‘(;/A;-’ i h.c. 
id 

Notice that the power n is governed by the discrete symmetry Z,. The damping by inverse 

powers of the AG scale comes from dimension counting. Such terms do not obey the Un( 1) 

symmetry. A tiny mass will be induced for w, 

77x: z p. E n--4 (lg’ 
( 1 

Also? mixing occurs among Zm [i and Im (2 such that the pseudo-Goldstone boson w picks 

up scalar couplings to fermions, 

& sin Bcpx (fl) n--4 mf - 
( 1 

- 
AC pip 

where sinBcP,r parametrizes the mixing between ImCr and Re@. 

The key ingredient of the program is to embed the discrete symmetry Z, inside the gauge 

group U,r( 1). Here we give one typical example of n = 6. The example contains heavy fields 

S, .a and the light C described above. They are all electroweak singlets. The Uc( 1) charges 

of them are, 

Qc(s) = 6 , Qc(z) = 2 , Qc(C) = 1 . (7) 
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The Higgs potential will contain uninteresting interactions which are invariant under the 

separate phase changes of each of the scalar fields above. Apart from them, there are the 

following non-trivial terms : 

T” = hS’z3 f kz’Cz + H.c. , (8) 

with h and k as coupling constants. The vacuum expectation value (VEV) (S) at the 1Zr; 

scale breaks the gauge symmetry Uc( 1) but preserves the discrete symmetry Ze, 

s-is, Z-d~‘/~Z, C-2-( . (9) 

We shall fine-tune such that (6) < (S). Th 1s is just part of the usual fine-tuning that gives 

rise to the gauge hierachy. It keeps the fields C light whereas .z and S acquire masses of order 

AC. The heavy field z will pick up a very small VEV driven by (0 as specified by the second 

term in Eq.(B), 

(2; - k (0’ /A:: . 

Interesting effective non-renomalizable low energy interactions of the type in Eq.(G) will he 

induced by the diagram in Fig. 1 with the induced amplitude 

(k3h/A;)Cs . (11) 

After C develops VEV, this produces a mass for the < field given by 

mu3 - ( ) 
; + A(C)’ 5 JilK)’ 1 G AC AC 

(12) 

where in the last step, we have used the fact that the dimensional parameter k is naturally 

of order -1~ without any additional fine-tuning. One can now obtain an AFLRF if. as 

shown before, one introduces another copy of C in order to produce the scalar coupling with 

fermions. 

It is straightforward to modify this procedure for an alternative model using Zs. In this 

case, we can use the following charge assignments : 

QG(S) = 5 1 S,(z) = 1 , QG(C) = 2 (InI 

The non-trivial terms in the Higgs potential are 

V’ = hS’[=z + d%n~‘r= + H.c. (14) 
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As in the previous example, a discrete Zs symmetry remains unbroken when S develops 

a, VEV. This ensures a U”(l) symmetry for the renormalisable terms involving the light 

field C, but allows non-renormalizable C’ couplings with coupling constant of order h2/.4c 

as illustrated in Fig. 2. In the notation of Eq.(4), h2 = PO. After C develops VEV. we thus 

obtain 

m, - h(()““/A~* , (15) 

which has the form of Eq.(5). 

One may suspect the reliability of these order of magnitude estimates, especially for 

physics involving Goldstone bosons. We have actually checked these estimates with detailed 

calculations to be presented elsewhere.[*l 

To consider the phenomenological implications, we first consider the Z5 model. The mass 

of the PGB is 

m&J - (0 /&lg . 

If, for example, (0 - 1 MeV , PO = 0.01 and AG - lO”GeV, we get 

md - lo-‘eV , 

which corresponds a force of range about a centimeter. It has a strength at a detectable 

level as a correction to the gravitational force, 

f2- (~)‘(&)‘(~~~~jz x@sinZ6CP,r 

The present experiment& are sensitive to a strength of order 10e4 for such a range X about 

centimeters. 

a(X = Icm) 5 10m4 

The range X here is very short for the experimental test even though we have squeezed the 

parameter (0 to be unnaturally small. 

If we consider the Ze model, we ran easily obtain a longer range about meters to kilome- 

ters. However, in the version that we present above, the strength is also further suppressed 

by a factor ((0 /AC)‘. In general, for the class of models of arbitrary n discussed above. we 

have the following relation where the AC dependence has been cancelled out. 

Q (gm (~+p-y (!ykk)2 (~l&)~ . 
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Thus we may arrive at a force either of too short range OT too weak strength for the current 

experiment to test. 

The situation may change as the experimental accuracy has been improved quite quickly 

in this area. However it will be interesting to have a way of producing a stronger force within 

the same spirit of naturalness. Before we conclude we like to illustrate such a mechanism. 

Note that the existence of the non-renormalizable terms serves two purposes: it gives a small 

mass to the PGB and at the same time provide the mixing between PGB and others Higgs 

which would have been prohibited had the PGB been an exact GB. The mixing eventually 

provides the scalar coupling to the fermion. Since the two effects are coming from the same 

term in our simple model, it results in a correlation between the range and the strengh of 

the force. 

What we need is a mechanism to suppress the mass of the PGB without suppressing 

the mixing which controls the stren$h. The mass can be interpreted as diagonal mixing. 

Therefore, in order to achieve stronger strength one needs to suppress the tree level diagonal 

mixing of the PGB. Then the PGB will pick up mass only through off-diagonal mixing 

with other scalar bosons through a kind of see-saw mechanism that has become standard 

practice in neutrino physics. The suppression of diagonal mixing can in general be achieved 

by additional symmetry or an elaborate choice of Higgs representations. So far we have not 

found any simple model of this type. We include the idea here in the hope that others ma.! 

eventually find an interesting, simple realization of the idea. 

In light of many recent experiments to search for long range feeble force. it is nice tu 

know that a force of such kind can very well exist within the context of the grand unified 

gauge theories. We like to re-emphasize that we have not used more finetuning than what 

is common in grand unified theory. The feebleness and the long range character of the force 

are direct consequenses of the gauge hierarchy already existing in any grand unified theories. 

The feebleness of these force within the simplest implementation of the idea (i.e. without, 

the see-saw mechanism mentioned earlier) easily keep it within the limit the recent null 

experiments. However, we believe the. strength that the mechanism predicts is within reach 

of the experiments in the near future. 

ACKNOWLEDGEMENT 

One of us (D.C.) thanks R.N. Mohapatra and G. Senjanovid for discussion. This research 

was supported by in part by U.S. Department of Energy and in part by the National Science 

Foundation. 

8 

~-F:.:~.- ..,..,. ~., ,.,_ ;._ ~.. ,.~,_.i ._.~_~~ .~ .~~~~ ~~~,~. ,__..,.._._ ___. ~,_.~,~_.~ .~ .,,. .__ ,...__._. _ .~~-~~I 



References 

‘l! E. Fischbach. D. Sudarsky, A. Szafer. C. Talmadge, and S.H. Aronson, Phys. &u. Letl. 

561 3 (1986); 58. 1427 (E) (1986); Ann. Phys. (NY) 182, 1 (1988). 

[2] R.V. E6tv6s, D. Pek& and E. Fekete. .4nn. Phys. (Leipzig), 68, 11 (1922). 

[3] See recent review articles. For example, in “Proc. of the XXI22 Rencontre de Mm-ion& 

on ‘&Sth Force, Neutrino Physics”, at Les Arcs, Savoie, France, ed. by 0. Fackler and J. 

Tran Thanh Van. Jan 23-30. 1988, pub. by Editons Frontikres, France. See also A. De 

Rtijula. Erice: July (1986); Phys. Lett. B180, 213 (1986). 

14) B.R. Heckel et al., Seattle Experiment, Seattle preprint (1989). 

[5] I. Bars and M. Visser, Phys. Reti. Lett. 57, 25 (1986); S. Barr and R. Mohapatra, Phys. 

Rev. Lett. 57, 25 (1986). 

[S] A. Halprin, M.V. Barnhill, and S. Barr, Phys. Rev. DS9, 1467 (1989); C. Hill and C. 

Ross, Nuci. Phys. B311, 253 (1988); Phys. Lett. 203B, 125 (1988). 

[7] D. Chang, R. N. Mohapatra, and S. Nussinov, Phys. Rev. Lett. 55), 2835 (1985). 

[S] D. Chang, W.-Y. Keung, and P. B. Pal, in preparation. 

FIGURE CAPTIONS 

Fig. 1 The induce vertex Cs in the Ze model of Eq.(i’). 

Fig. 2 The induce vertex Cs in the Zs model of Eq.( 13). 
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